一.ESD引起集成电路损伤的三种途径(1)人体活动引起的摩擦起电是重要的静电来源,带静电的操作者与器件接触并通过器件放电。(2)器件与用绝缘材料制作的包装袋、传递盒和传送带等摩擦,使器件本身带静电,它与人体或地接触时发生的静电放电。(3)当器件处在很强的静电场中时,因静电感应在器件内部的芯片上将感应出很高的电位差,从而引起芯片内部薄氧化层的击穿。或者某一管脚与地相碰也会发生静电放电。根据上述三种ESD的损伤途径,建立了三种ESD损伤模型:人体带电模型、器件带电模型和场感应模型。其中人体模型是主要的。二.ESD损伤的失效模式(1)双极型数字电路a.输入端漏电流增加b.参数退化c.失去功能,其中对带有肖特基管的STTL和LSTTL电路更为敏感。(2)双极型线性电路a.输入失调电压增大b.输入失调电流增大c.MOS电容(补偿电容)漏电或短路d.失去功能(3)MOS集成电路a.输入端漏电流增大b.输出端漏电流增大c.静态功耗电流增大d.失去功能(4)双极型单稳电路和振荡器电路a.单稳电路的单稳时间发生变化b.振荡器的振荡频率发生变化c.R.C连接端对地出现反向漏电三.ESD对集成电路的损坏形式a.MOS电路输入端保护电路的二极管出现反向漏电流增大b.输入端MOS管发生栅穿c.MOS电路输入保护电路中的保护电阻或接触孔发生烧毁d.引起ROM电路或PAL电路中的熔断丝熔断e.集成电路内部的MOS电容器发生栅穿f.运算放大器输入端(对管)小电流放大系数减小g.集成电路内部的精密电阻的阻值发生漂移h.与外接端子相连的铝条被熔断i.引起多层布线间的介质击穿(例如:输入端铝条与n+、间的介质击穿)四.ESD损伤机理(1)电压型损伤a.栅氧化层击穿(MOS电路输入端、MOS电容)b.气体电弧放电引起的损坏(芯片上键合根部、金属化条的最窄间距处、声表面波器件的梳状电极条间)c.输入端多晶硅电阻与铝金属化条间的介质击穿d.输入/输出端n+扩区与铝金属化条间的介质击穿。(2)电流型损伤a.PN结短路(MOS电路输入端保护二极管、线性电路输入端保护网络)b.铝条和多晶硅条在大电流作用下的损伤(主要在多晶硅条拐弯处和多晶硅条与铝的接触孔)c.多晶硅电阻和硅上薄膜电阻的阻值漂移(主要是高精度运放和A/D、D/A电路)五.ESD损伤实例最容易受到静电放电损伤的集成电路有:CCD、EPROM、微波集成电路、高精度运算放大器、带有MOS电容的放大器、HC、HCT、LSI、VLSI、精密稳压电路、A/D和D/A电路、普通MOS和CMOS、STTL、LSTTL等。
(1)国外实例a.Motorola公司生产的MOS大规模集成电路─微处理器(CPU),在进行老练试验的11个星期中仔细进行了观察和记录。发现在试验开始阶段因为没有采用导电盒放置样品,拒收数与被试验元件总数相对比例约为40×10-n(n值为保密数字)。但从第四个星期开始,样品采用镀镍盒放置后,则降低15×10-n。此试验相继跟踪了7个多星期,平均的拒收比例为18×10-n。说明MOS大规模电路在使用过程中必须采取严格的防ESD措施。
b.某公司共进行了18700只MOS电路的老练,发现失效率很高,经分析和研究认为大部分失效是由ESD引起。于是该公司为此问题专门写了一份有改正措施的报告,并对全体有关人员进行了防静电放电损伤的技术培训,器件采用防ESD包装,加强了各项防ESD损伤的措施,后来又老练了18400只同种器件,拒收率降低到原来的1/3.
c.某一批“64位随机存贮器”,从封装到成品测试,其成品损失率为2%,该存贮器为肖特基-双极型大规模电路,经调查,操作过程中曾使用过塑料盒传递器件,由于静电放电损伤了输入端的肖特基二极管,使二极管反向特性变软或短路。
d.一批“双极模拟开关”集成电路,在装上印制电路板,经保形涂覆后,少数样品出现输入特性恶化。解剖分析后,发现输入端(基极)的铝金属化跨过n+保护环扩散层处发生短路或漏电,去除铝后,可发现n+环上的氧化层有很小的击穿孔。由于n+扩区上的氧化层较薄,并且光刻腐蚀的速度较快,因而容易发生ESD击穿,版图设计时,如果必须采用n+扩散层作埋层穿接线,其位置应慎重选择,避免输入端铝金属化跨过n+扩区,对于输入端铝条跨过n+扩区的双极电路,使用时应采取必要的防静电措施。
(责任编辑:蚂蚁) |